Penentuan Tingkat Kekumuhan Permukiman Kumuh Kota Palembang Dengan Metode Algoritma K-Means Clustering Dan Algoritma ID3
Abstract
Slum settlers are a condition of uninhabitable settlements. Slums are devided into 4 levels, namely : high slums, medium, light and not slum. To produce these four levels, method is used namely K-Means Clustering Algorithm and the ID3 Algorithm is used to give priority with pre determined attributes then accumulated with the results of clustering classified as slum level. The accuracy test is performe by using the confusion matrix method, where the data results from the K-Means Clustering method compared to the baseline data. The results obtained from the accuracy with confusion matrix is 0,70%, which means the level of truth (accuracy) between the result of the baseline data with research data is 70%.
References
Atthina, N., & Iswari, L. (2014). Klasterisasi Data Kesehatan Penduduk untuk Menentukan Rentang Derajat Kesehatan Daerah dengan Metode K-Means.
Han, J Kamber, M. (2006) Data Mining Concepts & Techniques. 2nd edn. San Fransisco: Elsevier.
Handryant, A. N. (2012). Permukiman Kumuh, Sebuah Kegagalan Pemenuhan Aspek Permukiman Islami. Journal of Islamic Architecture, 1(3). https://doi.org/10.18860/jia.v1i3.1774
Kusrini & Lutfi, E. . (2009). Algoritma Data Mining. Yogyakarta: ANDI.
Manongga, D. (2005). Teori dan Aplikasi Iterative Dichotomizer Three dalam Pembelajaran Mesin. Salatiga: Universitas Kristen Satya Wacana.
Rumagit, C. M., Fibriani, C., No, J. D., Salatiga, K., & Tengah, J. (2016). Penerapan Metode ID3 terhadap Perancangan Sistem Penentuan Penerima Bantuan Sosial Pemugaran RTLH Kota Salatiga, 02(03).
Tan, P.-N. (2006). Introduction to Data Mining. Boston: Pearson Addison.
Undang-Undang Nomor 1 tahun 2011
Utama, T. D., Informatika, J., Maret, U. S., Sihwi, S. W., Informatika, J., Maret, U. S., … Maret, U. S. (2014). Vol 3 . No 2 . Desember 2014 ISSN : 2301 – 7201 IMPLEMENTASI ALGORITMA ITERATIVE DICHOTOMISER 3 PADA, 3(2), 74–83.
Z, Z. A., & Sarjono. (2016). Analisis Data Mining Untuk Menentukan Kelompok Prioritas Penerima Bantuan Bedah Rumah Menggunakan Metode Clustering K-Means (Studi Kasus: Kantor Kecamatan Bahar Utara). Z, Zainul Aras Sarjono, 1(2), 159–170
Copyright (c) 2021 Lastri Widya Astuti (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.